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Phase switching in a system of two noisy Hodgkin-Huxley neurons coupled
by a diffusive interaction
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28933 Móstoles, Spain

~Received 9 June 2003; published 31 December 2003!

The focus of this paper is on the synchronous activity of a system of two intrinsically noisy Hodgkin-Huxley
neurons coupled by a diffusive interaction. It is shown that conductance noise allows the relative phase of the
neurons to display several different dynamical regimes ranging from phase and antiphase locking to random
switching between two or more states. A synchronization diagram displaying the structure of the distribution
function of the cyclic relative phase of the two neurons is presented. The addition of sinusoidal forcing terms
to the equations governing the membrane voltage of both neurons gives rise to the statistical locking of those
random switchings to the phase of the external signal.
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I. INTRODUCTION

Experimental evidence suggests that the synchronous
tivity of large assemblies of neurons provides the basis of
remarkable computational performance of the brain@1,2#. In
an attempt to understand the origin and role of synchron
neuronal activity, a number of modeling approaches h
been based on the description of each single neuron
multidimensional oscillator@3#. Thus, the study of synchro
nization processes in ensembles of interacting nonlinear
cillators is basic for the understanding of some key issue
neuroscience. Most former theoretical investigations into
self-synchronization of ensembles of nonlinear oscillat
have focused on the question to what extent the degre
synchronization can be controlled through the strength of
interoscillator coupling@4–7#. This formulation assumes tha
the synchronous activity of large neural systems is achie
through variation of synaptic interactions. However, it h
been argued that transitions from desynchronized to sync
nized states and vice versa could also be mediated
changes in the susceptibility of the neurons to external e
tations@8#. From a theoretical point of view this idea implie
that the interesting regime to model is the border betw
excitable and self-oscillatory behaviors of the neuron, a
gion where the internal noise of the cell could play a sign
cant role as a promoter of neuronal synchronization.

The synchronization of two deterministic relaxation osc
lators coupled by a diffusive interaction is a well know
phenomenon. Some years ago, Sherman and Rinzel@9# ob-
served dephasing and antiphase locking in simulations
two diffusively coupled neurons, while the effects of syna
tic coupling, both of excitatory and inhibitory character,
the synchronization of neural firing were tackled
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Vreeswijk et al. @10#. On the other hand, Hansel and c
workers@11# investigated the phase dynamics of two weak
coupled Hodgkin-Huxley~HH! neurons and showed the ex
istence of out-of-phase locking between them. Later on, H
and co-workers@12# explained these results by investigatin
the dynamics of the relative phase of an ensemble of cou
Morris-Lecar neurons. The Morris-Lecar system@13# is a
simplified version of the original Hodgkin-Huxley model o
neuronal dynamics@14#, in which the four variables of this
last system have been reduced to only two without affect
in a drastic manner the qualitatively features of the origi
model. By restricting to the weak coupling limit, as the
approach is valid as long as the shape of the limit cycle
only weakly altered by the interaction, Han and co-worke
@12# showed that it is not immediately obvious whether t
net result of diffusive coupling will lead to synchronizatio
or desynchronization of two coupled oscillators. Howev
for many cycle limit systems, weak diffusive coupling wi
lock the neurons in a stable out-of-phase oscillation with
phase difference ofp. If the coupling is not weak enough,
complex evolution of the phases with alternating periods
synchronous and asynchronous activity would appear.

Synchronization phenomena have been also investig
in nonlinear stochastic systems. There, the phase descrip
has been found to be useful for the analysis of synchron
tion in many systems of biological relevance. A great dea
these investigations have been based on the classica
proach to synchronization in the presence of additive no
carried out some years ago by Stratonovich@15#. Usually, the
noise acting on the elements of an ensemble of neurons
been introduced by means of a fluctuating current tha
delivered to the neuron either by the rest of the element
the ensemble~thus resembling a fluctuating synaptic inpu!
or directly from the external world~thus simulating the ac-
tion of an experimenter! @3#. The analysis of the phenomeno
logical stochastic bifurcations taking place in noisy Van d
Pol–Bonhoeffer@16# and FitzHugh-Nagumo@17# oscillators
driven by weak additive noise has shown that external an
©2003 The American Physical Society17-1



in
s

an
t

ill
th

ne
e
ilit
io
n

es
a

l
io
ng

a
he
d

s-
ith
m
te
g
tu
n

go
io
ra
n
ar
so
.
n

av
a
te
n

o
a
a

na
s

au

e
in

e
ve

n’s
e

e

so-

l as-
ne.
l
of

nal

of
t of

tes

h

he

in
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synaptic noises induce these systems to move alongstochas-
tic limit cyclesin a range of parameters where the determ
istic equations do not show limit cycle behavior at all. Thu
additive noise decreases the effective threshold for firing
allows a weak interneuronal coupling to drive the neurons
synchrony@18#.

In this paper, the effects of a different kind of noise w
be investigated. Basic to our present understanding of
nervous system is the fact that the dynamics of ion chan
underlies all the electrochemical phenomena taking plac
nerve cells. Thus, central to the study of neuronal excitab
is the connection between the microscopic properties of
channels and the macroscopic behavior of nerve membra
Following the development of patch-clamp techniqu
which allowed to measure ion currents through individu
ion channels for the first time@19#, a number of numerica
studies have been devoted to relate the stochastic behav
individual ion channels to macroscopic currents that cha
in a highly deterministic manner@20#. More recently, some
work has been carried out aiming to incorporate the stoch
tic description of ion channels into the framework of t
Hodgkin-Huxley model of spiking dynamics. Chow an
White, for example@21#, have derived an analytical expre
sion for the probability of spontaneous firing in analogy w
a classical barrier-crossing problem and, under the assu
tion that sodium inactivation takes place at a much fas
time scale than changes in the other variables appearin
the HH model, they have been able to incorporate a fluc
ating term to the equation governing the sodium conducta
in this model. On the other hand, Fox and Lu@22# have
approached the problem starting from a master equation
erning the stochastic dynamics of a large population of
channels. This formulation allows these authors to cont
the description of the dynamics to yield Langevin equatio
describing voltage-dependent fluctuations in the gate v
ables that account for the activation and inactivation of
dium channels and the activation of potassium channels

In what follows, we will use the stochastic HH neuro
model of Fox and Lu to investigate the synchronizing beh
ior of a pair of noisy neurons when the coupling as well
the noise intensity are varied. In particular, we are interes
in the phase locking of these neurons when conducta
noise is allowed to excite them from the resting state t
regime of random spiking. Regimes of phase and antiph
synchronization, as well as multistate phase dynamics h
been found.

The forcing of the system by an external sinusoidal sig
added to the equations for the membrane voltages allow
to lock this switching to the period of the forcing. This seem
to be an interesting feature of the system’s dynamics bec
unlike what occurs in the usual stochastic resonance~SR!
phenomenology, the variable that performs the well-to-w
hoping motion does not appear explicitly in the Langev
description of the fluctuating dynamics.

II. THE HODGKIN-HUXLEY MODEL
WITH CONDUCTANCE NOISE

Let us consider briefly the description of the spac
clamped dynamics of a patch of neuronal membrane de
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oped in the classic paper of Hodgkin and Huxley@14#. There,
the temporal evolution of the voltage across the neuro
membraneV(t) is governed by a differential equation of th
form

C
dV

dt
52gNa* m3h~V2VNa!2gK* n4~V2VK!

2gL~V2VL!1I , ~1!

whereC51 mF/cm2 is the capacitance per unit area of th
membrane, andgNa* 5120 mS/cm2 and gK* 536 mS/cm2 are
the maximal conductances per unit area associated with
dium and potassium channels. The constantsgL
50.3 mS/cm2 and VL5254.4 mV are, respectively, the
constant conductance per unit area and reversal potentia
sociated with the leakage of ions through the membra
Moreover,VNa550 mV andVK5277 mV are the reversa
potentials associated with the equilibrium distribution
Na1 and K1 ions across the axonal membrane@14#. The
constantI represents a stimulus or constant~tonic! current
that is delivered externally to the neuron. The adimensio
gate variablesm(t),h(t), andn(t) that govern the activation
and inactivation of sodium channels and the activation
potassium channels, respectively, obey the following se
differential equations:

dm

dt
5am~V!~12m!2bm~V!m,

dh

dt
5ah~V!~12h!2bh~V!h,

dn

dt
5an~V!~12n!2bn~V!n, ~2!

where the experimentally determined voltage transition ra
are given explicitly by the expressions@14#

am~V!5
0.1~V140!

12exp@2~V140!/10#
,

bm~V!54 exp@2~V165!/18#,

ah~V!50.07exp@2~V165!/20#,

bh~V!5$11exp@2~V135!/10#%21,

an~V!5
0.01~V155!

12exp@2~V155!/10#
,

bn~V!50.125exp@2~V165!/80#. ~3!

It can be shown@23# that, with this parametrization, the birt
of limit cycles occurs atI 5I b1'6 mA/cm2 due to a saddle-
node bifurcation of periodic orbits. On the other hand, t
unstable branch of the periodic solutions dies atI 5I b2
'9.8 mA/cm2 through an inverse Hopf bifurcation. Thus,
the parameter regionI ,I b1, the resting stateVrest
7-2
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PHASE SWITCHING IN A SYSTEM OF TWO NOISY . . . PHYSICAL REVIEW E68, 061917 ~2003!
'265 mV is a globally stable solution whereas forI b1,I
,I b2 the system has two stable attractors, a fixed point an
limit cycle. The focus of this work is on the parameter regi
near the onset of the saddle-node bifurcation of periodic
bits. In thisexcitable region, neurons are unable to fire spo
taneously in the absence of noise.

A great deal of work has been devoted to study the effe
of forcing on the HH model@23,24#. This has been done s
far by allowingI to become a function of time of the gener
form

I 5I 01I ext~ t !1I syn~ t !, ~4!

whereI 0 is a constant,I ext(t) is an external signal of deter
ministic or stochastic nature, andI syn(t) is a stochastic pro-
cess that simulates the synaptic noise. In the case of a
chastic driving~andI 0,I b1) the HH system either fluctuate
around the fixed point or makes large excursions around
limit cycle @24#. Thus, a source of additive noise in Eq.~1!
induces voltage oscillations that appear as a train of sp
occurring at random times.

In this paper we are interested in describing the effect
conductance noise on the dynamics of the HH model.
conductance noise it is meant that we explicitly take in
account the spontaneous fluctuations of the membrane
ductance due to the intrinsically stochastic dynamics of
individual channels. As a consequence, and unlike the fl
tuating terms appearing in Eq.~4!, the conductance noise i
an intrinsic property of each neuron. To model this kind
noise, we recall the stochastic HH model of Fox and Lu@22#,
where the voltage variable still obeys Eq.~1! but the gate
variables are random quantities obeying the set of stocha
differential equations

dm

dt
5am~V!~12m!2bm~V!m1jm~ t !,

dh

dt
5ah~V!~12h!2bh~V!h1jh~ t !,

dn

dt
5an~V!~12n!2bn~V!n1jn~ t !, ~5!

where the noise termsjm(t), jh(t), andjn(t) are indepen-
dent, zero-mean, Gaussian stochastic processes with aut
relation functions given by@22#

^jm~ t !jm~s!&5
DNaambm

~am1bm!
d~ t2s!,

^jh~ t !jh~s!&5
DNaahbh

~ah1bh!
d~ t2s!,

^jn~ t !jn~s!&5
DKanbn

~an1bn!
d~ t2s!. ~6!

The adimensional parametersDNa and DK are associated
with the inverse of the total number of sodium and potass
channels present in a given patch of membrane. In orde
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reduce the number of parameters, and taking into accoun
number of sodium and potassium channels in a patch
membrane~60 potassium and 18 sodium channels per squ
micrometer@25#!, we have takenDNa5D and DK5D/0.33
so that the correct proportion between sodium and potass
channel densities is preserved.

As is well known, qualitative changes in the behavior
stochastic systems due to the modification of a paramete
termed phenomenological stochastic bifurcations. These
furcations refer to qualitative changes in the stationary d
tribution of the variables. A typical feature that has been u
to mark the occurrence of such a bifurcation is the numbe
modes of the stationary distribution function. The analysis
the stochastic bifurcation leading to spiking in the HH mod
subjected to a subthreshold tonic current plus additive s
aptic noise has been carried out by Tanabe and co-wor
@24#. Here, we show that a similar behavior takes place wh
the HH model is subjected to conductance noise.

The stationary distribution of the voltage is defined as
marginal probability distribution of the processV(t),

ps~V!5E
0

1

dmE
0

1

dhE
0

1

dn ps~V,m,h,n!, ~7!

whereps(V,m,h,n) is the time average of the joint probabi
ity distribution p(V,m,h,n;t) of the random processe
V(t),m(t),h(t), and n(t) that define the stochastic HH
model

ps~V,m,h,n!5 lim
T→`

1

TE0

T

dt p~V,m,h,n;t !. ~8!

Histograms representing the marginal stationary distribut
for the membrane voltageps(V) have been determined from
the numerical simulation of the stochastic system by us
the algorithm put forward in Ref.@28#. In Fig. 1, we present
the bifurcation diagram obtained from these histograms. T

FIG. 1. Stochastic bifurcation diagram for the HH model wi
conductance noise whenI 50. Notice thatD is an adimensional
parameter. Thick lines correspond to the top and bottom bounda
of the stationary distribution function of the membrane potent
ps(V). The dashed line stands for the mean value of the memb
potential computed over this distribution
7-3
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thick lines appearing in this diagram are the top and bott
boundaries of the stationary distribution function of t
membrane potentialps(V) as functions of the noise intensit
D. These boundary lines have been drawn so that 1% ofps is
beyond the top line and another 1% is below the bottom o

At low noise (D,0.0005), the voltageV(t) performs
small random oscillations around the resting state of the
tem. In this regime, the stochastic bifurcation diagram
minds one of the ‘‘canard’’ zone that appears close to
Hopf bifurcation threshold in the FitzHugh–Nagumo mod
@26#. This small-amplitude oscillatory behavior correspon
to the silent regime of the neuron because no spikes
produced, and is characterized by a nearly Gaussianps(V).
As the noise is increased, the system is driven to fire r
domly, and a second mode ofps(V) appears at high values o
V that is associated with the performing of large excursio
of the system variables through the phase space. This ch
in the structure ofps(V) asD changes can be associated w
the occurrence of a phenomenological stochastic bifurcat
As we can notice in Fig. 1, and in contrast with what occur
a deterministic bifurcation, the transition from one stationa
distribution to another qualitatively different one procee
progressively when the bifurcation parameter is varied.

On the other hand, as suggested by the results shown
previous study@27#, the mean firing rate of an isolate
Hodgkin-Huxley neuron with fluctuating conductances
creases with increasing noise level for every value of
current I ,I b1. Thus, conductance noise shifts the onset
oscillatory behavior to lower values ofI, thus cooperating
with the coupling to synchronize the neurons. This is
basis of the noise-induced frequency locking between n
rons.

III. NOISE-INDUCED PHASE SWITCHING

Let us consider a system composed by two Hodgk
Huxley neurons coupled to each other by a diffusive inter
tion. The equations of this system explicitly read

C
dV1

dt
52gNa* m1

3h1~V12VNa!2gK* n1
4~V12VK!2gL~V1

2VL!1e~V12V2!1I 1 ,

C
dV2

dt
52gNa* m2

3h2~V22VNa!2gK* n2
4~V22VK!2gL~V2

2VL!1e~V22V1!1I 2 , ~9!

whereV1(t) andV2(t) are the instantaneous voltages acro
the respective membranes of the two neurons andI 1 and I 2
are two constants. The parametere is the strength of the
‘‘diffusive’’ @12# or ‘‘electrical’’ @3# coupling between the
neurons and can be interpreted as the conductance o
~symmetric! synaptic connections between them. Again,
gate variables of the two subsystems obey Eqs.~5!.

The numerical integration of the resulting set of eight s
chastic differential equations has been carried out by usin
stochastic integration scheme with a step sizeh50.01 @28#.
In order to confine the conductances within the physica
06191
e.

s-
-
e
l
s
re

n-

s
ge

n.
t
y
s

a

-
e
f

e
u-

-
-

s

the
e

-
a

y

allowed values ranging from zero tog* we have imple-
mented numerically the procedure to makem(t),h(t), and
n(t) always located between zero and one@22#. Next, two
point processes of the form

z~ t !5 (
n51

N

d~ t2tn! ~10!

have been extracted from the crossing of the stochastic
nalsV1(t) andV2(t) through a predetermined threshold. U
strokes of the voltage variables are counted as spikes w
they reach a minimum amplitude of 10 mV having prev
ously crossed the reset value of250 mV from below. This
spike detection scheme discards any very rapid recrossin
the threshold at 10 mV, an effect that increases in probab
as the noise intensity is increased. Each one of the aforem
tioned point processes gives the temporal sequence of s
occurrences$tn% for a particular neuron.

Let us consider two identical neurons withI 1(2)
56 mA/cm2. For this value of the tonic current the neuron
in the so-calledexcitable regime, where the deterministic at
tractor is the rest state and the firing can be excited by
noise. In what follows, we will consider the strength of noi
acting on both neurons to be identical,D15D25D.

To study phase synchronization, we have associate
phase to the spike sequence$tn% of each neuron by means o
the prescription@1#

f~ t !52p
t2tn

tn112tn
12pn, tn<t<tn11 . ~11!

The phase synchronization of two neurons can be stud
with reference to the instantaneous phase difference betw
them,c(t)5f1(t)2f2(t). In stochastic systems this quan
tity is generally not constant even when the oscillators
frequency locked. For small coupling and/or strong no
intensity c(t) will grow unbounded. However, if the cou
pling is increased and the noise level is not too high
relative phase will fluctuate around some constant level.
times, these stationary fluctuations will lead to a phase
where the relative phase changes abruptly by62p. Thus, it
is useful to define the phase locking condition in a statisti
sense by using the cyclic relative phase

F5c ~mod 2p!. ~12!

A dominant peak of the distribution of this cyclic relativ
phaseP(F) will announce the existence of a preferred re
tive phase associated with the dynamical evolution of b
neurons. When this preferred phase is zero we spea
phase synchronization in a statistical sense. Analogously
can speak of out-of-phase synchronization when the distr
tion P(F) peaks around a nonzero value ofF.

For the system at hand, a synchronization diagram
terms of the parameterse and D has been obtained. Thi
diagram, which is depicted in Fig. 2, presents several
gions, each one characterized by a different form of the pr
ability distribution P(F). The characteristic features o
7-4
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some distributions corresponding to the several regions
pearing in the synchronization diagram are plotted in Figs
and 6.

In region 1 of Fig. 2, the distributionP(F) shows a
monomodal character and its peak is centered onc5p.
Thus, this region corresponds to the antiphase locking s
that appears at strong diffusive coupling. In our system th
appears a minimum value of the coupling parametere0 for
which the antiphase locking becomes stable in a statis
sense. Furthermore, as we can observe in the synchroniz
diagram, this minimum coupling is quite independent of t
noise intensity, as least forD,231023. For large values of
e with respect toe0 the probability of the relative phas
becomes rather narrow, thus indicating that for strong c
pling the state of statistical antiphase synchronization
close to the full antiphase synchronization appearing in
terministic systems. An example of this kind of probabili
distribution is depicted in Fig. 3~a!, whereas in Fig. 4~a! a
realization of the processc(t) for the same values ofe and
D is depicted to show the fluctuating character of its tem
ral evolution. Indeed, the particular value of the base l
around which the fluctuations are performed could bep or
2p depending of the realization. Whene is decreased and
the lineM2B is approached the distribution functionP(F)
broadens. It also broadens if we move to higher noise in
sities by keepinge.e0 constant.

The crossing from above of the lineM2B corresponds to
the distributionP(F) becoming bimodal. Just under this lin
the two peaks of the distribution are closely spaced but ae
is further decreased, these two peaks shift away and nar
This focusing clearly reflects the two-state character of
phase dynamics. In Figs. 3~b! and 3~c! we depict the form of

FIG. 2. Synchronization diagram for the relative phase of t
noisy Hodgkin-Huxley neurons. Region 1 corresponds to state
statistical antiphase synchronization. In region 2 there is no no
induced firing. TheM2B line corresponds to a functione0(D)
giving the minimum value of the coupling strengthe for which a
statistical phase locking is stable.D is the noise strength as it ap
pears in Eq.~6! and the subsequent paragraph. Drifting behavior
the relative phase corresponds to the lower right corner of the
gram.
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the distribution functionsP(F) corresponding to values ofe
located at both sides of the lineM2B. The temporal evolu-
tion of some realizations of the stochastic processc(t) cor-
responding to those cases appears in Fig. 4~b! and 4~c!. In
Fig. 3~d!, on the other hand, the structure ofP(F) for a

of
e-

f
a-

FIG. 3. Probability distribution of the cyclic relative phase f
some characteristic values of coupling and noise.A, e50.16; B, e
50.12; C, e50.11; andD, e50.07. In all casesD51025. The
panels have different vertical scales.

FIG. 4. A single realization of the stochastic processc(t) cor-
responding to the four representative cases depicted in Fig. 3.
7-5



n
s

te
o
ce
t
a

s
ic
o

tiv

we
ti

of
l

vi
th
el
on
dy

ic
t

ot

-

ot

rm
O
n

e

th
e
h

io

,
he
a

-

ve
am.
ted
cture
ve
n
we
or-

to

ears

tion
bu-
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range of parameters well below the dividing line is show
Its bimodal character neatly announces the main feature
the phase evolution shown in Fig. 4~d!. As we can observe in
this last plot, the relative phase of both neurons fluctua
successively around a pair of symmetric values and, fr
time to time, jumps from one of them to the other take pla
This two-state dynamics reflects a compromise between
effects of coupling and noise. Our findings thus imply th
the relative phase of the system carries out a proces
noise-induced phase switching between two symmetr
states resulting from the combined action of noise and c
pling.

As a consequence, the fluctuating dynamics of the rela
phasec in the region close to the lineM2B resembles the
overdamped evolution of the coordinate of a particle in
one-dimensional double-well potential. In other words,
can characterize the temporal dependence of the rela
phase by the stochastic differential equation

ċ52Ue f f8 ~c!1j~ t !, ~13!

wherej(t) is some stochastic process that plays the role
noise andUe f f8 is the first derivative of an effective potentia
function Ue f f(c) that presents a single minimum ife<e0
and two symmetric minima whene.e0. Notice, however,
that in the present situation the potentialUe f f is not givena
priori , as is the case in the usual setting of the Lange
description of fluctuations. In our case, the properties of
function depend on the dynamical behavior of a complet
different system, namely, the system of differential equati
describing the two neurons. Thus, the description of the
namics of the relative phase provided by Eq.~13! can be
considered only as a useful way of thinking.

In this context, we can say that a new phenomenolog
stochastic bifurcation takes place for the relative phase as
coupling parameter crosses the lineM2B in the synchroni-
zation diagram. As is customary in these cases, we pl
bifurcation diagram depicting the maximaFpeak of P(F) as
the coupling parametere is varied. Such a diagram is pre
sented in Fig. 5 forD51025.

Region 2 in Fig. 2 corresponds to the silent state of b
neurons. There, the combination of coupling and noise
unable to excite the firing and so, both neurons only perfo
low amplitude fluctuations around its resting potentials.
the other hand, the dynamics of the relative phase in regio
corresponds to the bimodal structure ofP(F) depicted in
Figs. 3~c! and 3~d!. As we approach region 2 from above, th
peaks of this distribution shift toF5052p. In region 5, on
the other hand, the structure ofP(F) has a complex multi-
modal character with two symmetrical peaks aroundF
5p, two extra peaks atF'0 andF'2p, and a number of
smaller maxima. As we move towards smaller values of
coupling parameter, these two central peaks decreas
height and eventually disappear as we enter region 6. T
last region is thus characterized by a bimodal distribut
with peaks centered aroundp and 0. In region 4, on the
other hand, the peak aroundp also disappears. In region 7
the distributions are again of a bimodal character but t
have smaller wings than those of region 5. As we decre
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the coupling parametere, we enter region 8 where the struc
ture of the distribution functionP(F) is monomodal with
highly developed wings. The drifting behavior of the relati
phase corresponds to the lower right corner of the diagr
In this synchronization diagram no lines have been plot
separating the aforementioned regions because the stru
of P(F) changes in a continuous manner when we mo
eithere or D and it will be rather arbitrary to draw separatio
lines among regions of closely related behavior. In Fig. 6
have plotted some representative distribution functions c
responding to different combinations ofe and D. Isolated
points marked in the synchronization diagram correspond

FIG. 5. Bifurcation diagram showing the maxima ofP(F) as
functions of the coupling strengthe for D51025. Points corre-
spond to the results of the simulation and the dotted line app
only as a guide to the eye.

FIG. 6. The distributions of the cyclic relative phaseP(F) cor-
responding to some representative points of the synchroniza
diagram specified in Fig. 2. Typically, each one of these distri
tions has been plotted by using 103 stochastic realizations ofF,
each one lasting 8 s.
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PHASE SWITCHING IN A SYSTEM OF TWO NOISY . . . PHYSICAL REVIEW E68, 061917 ~2003!
the different distributions depicted in this last figure.
The structure of the distributionP(F) is dependent on the

neurons being equal or different. In Fig. 7 we have depic
the distribution of the cyclic relative phase for two neuro
which receive different tonic subthreshold currents. As
can observe, in this case the distributionP(F) is asymmet-
ric. This distribution should be compared with that appear
in Fig. 6~d!, because they both correspond to the point
beled d in the synchronization diagram. This comparis
shows that depending on which neuron has its phase del
with respect to the other the distribution ofF is rather simi-
lar or very different to that of the symmetrical system.

IV. TEMPORAL STRUCTURE OF THE PHASE
SWITCHING

The behavior of the coupled HH neurons studied in t
paper can lead to spike trains with different temporal str
tures. For values of the coupling parameter near the lineM
2B the firing is continuous. However, near the onset of sp
ing regime, the structure of the spike train fired for the ne
rons depends on the particular choice of the parameters
we can observe in Figs. 8~a! and 8~b!, both neurons can emi
bursts of spikes separated for long periods of small osc
tions around their resting potentials. During the time cou
of these bursts, the relative phase performs a number of
den changes, thus giving rise to a rather complex temp
evolution of the functionc(t). As we approach the region 2
both the frequency of bursting and the number of spikes
burst decrease, thus announcing the proximity of the si
region. During the intervals between two successive bu
the phase of each neuron remains almost constant due t
large value oftn112tn in Eq. ~11!. As a consequence, durin
these interburst periods the relative phase takes valuec
'2np with n50,1, . . . , and so,only contributions to
P(F'0) and P(F'2p) are made. In dynamical regime

FIG. 7. The distribution of the cyclic relative phase correspo
ing to the pointd in the synchronization diagram (e50.04, D56
31025) for an asymmetrical system in which the tonic signal a
ing on neuron 1 wasI 156 mA/cm2 while that corresponding to
neuron 2 wasI 255 mA/cm2.
06191
d

e

g
-

ed

s
-

-
-
As

-
e
d-
al

er
nt
ts
the

with long interburst periods, these extreme values of the
clic relative phase can correspond to relative maxima of
distributionP(F), as is shown in panels~b!, ~c!, ~d!, ~e!, and
~f! of Fig. 6.

Starting from the dynamical evolution ofc in the phase-
switching regime, we have obtained a new point process

w~ t !5 (
k51

M

d~ t2tk!, ~14!

where a given temporal sequence$tk ;k51,2, . . . ,M % corre-
sponds to the successive times at which a realization of
cyclic relative phase crosses the valuec50 ~switching
times!. The introduction of this point process allows us
study the temporal structure corresponding to the bista
dynamics of the relative phase founded in the region clos
the lineM2B, which has been described above. This str
ture can be characterized at a first level by the distribution
switching times. There are only two possible consecut
time-interval sequences available to a two-state system
shown in Fig. 9. The intervalsTk measure the escape time
from the neighborhood of the upper value of the relat
phase. On the other hand, the sequence$tk% corresponds to
the intervals between successive jumps from states aro
one of the attractors to the other one.

In Fig. 10 we present two histograms characterizing
random behavior of these two different time intervals for t
stochastic two-state dynamics of the relative phasec. Both
histograms show a rapid increase in the number of event
the sizes of the intervals increase, followed by a maxim
and a slow decaying tail extending to very long intervals.
a number of cases no phase jumps were detected in
course of stochastic realizations lasting 50 s. The mean

-

-

FIG. 8. Bursting behavior fore50.03 andD5231025. In pan-
els~a! and~b! two single realizations of the membrane potentialsV1

and V2 are depicted. In panel~c! we can observe the tempora
evolution of the relative phasec(t) corresponding to these particu
lar realizations. The distribution of the cyclic relative phaseP(F)
corresponding to this case belongs to region 4 in Fig. 2.
7-7
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tervals obtained werêT&5726.1 ms and̂ t&51417.8 ms,
suggesting that both quantities are connected by

^t&52^T&. ~15!

This relationship in turn suggests that the switching proba
ity is symmetrical. In fact, the structure of these histogra
agrees with our previous characterization of the two-s
dynamics of the relative phase close to theM2B line as the
randomly forced evolution ofc in an symmetrical bistable
potentialUe f f(c).

Given the structure of the above mentioned histogram
is tempting to explore the behavior of the relative phase
der the action of a forcing term in order to ascertain
possibility of controlling the switching times by applyin
external sinusoidal currents to both neurons. Some years
Longtin and co-workers characterized SR in bistable syst
by means of the multi-modal character of the first pass
time distribution function of a particle moving in a doub
well potential @29# and a huge amount of work has be
devoted since then to explore further this idea@30,31#. No-
tice, however that, unlike what happens in the usual set
of SR, in the present case the variable that performs
well-to-well switchings does not appear explicitly in th
Langevin equations of the system. It is nota priori obvious
that an additive signal acting on the voltage variables co
induce such phase switchings.

Let us consider the simultaneous and symmetric forc
of both neurons by an external sinusoidal signal of amplitu
A and frequencyvs acting on the respective voltage equ
tions. In this case, the termsI 1(2) appearing in Eq.~9! will be
written as

I 1(2)5I 01Acosvst, ~16!

where I 056.0 mA/cm2. In Fig. 11 we present some resul
obtained by integrating the resulting set of stochastic diff

FIG. 9. An example showing the two possible sequences
consecutive time intervals available from the two-state evolution
the relative phasec.
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ential equations for a value of the amplitude of the forci
A51.5 mA/cm2. This signal is subthreshold so that in th
absence of noise it is unable to excite the firing of the n
rons. Also, we have chosen a frequencyvs51.25 Hz which
is smaller than the inverse of the mean switching interva
absence of forcing. In the upper panel, a single trajectory
the cyclic relative phaseF is depicted jointly with a sinu-
soidal function of periodTs52p/vs ~dashed line!. This
function provides a useful background to analyze the tim
of the phase switching processes. As we can observe, in
of the very complex behavior ofF, the sudden jumps from
one attractor to the other seem to occur with greater pr
ability at a given phase of the external signal. This statisti
locking to the phase of the external signal is demonstra
clearly in the lower panel of Fig. 11, where the~unnormal-
ized! histogram of switching times is depicted. Note the p
riodic character of this histogram with rather broad maxim
separated by time intervals that are equal to the period of
forcing signalTs553103 ms. Notice also that, in spite o
the rather high variability of the time intervals that elap
between successive switchings, these maxima are clearly
fined. In fact, they are located at the successive minima

f
f

FIG. 10. In panel~a!, the histogram of residence times ofc in
one of its attractors is depicted fore50.07 andD5231025. These
values correspond to a random two-state dynamics similar to
one leading to the distribution depicted in panel~a! of Fig. 6. In
panel~b!, the histogram of intervals between successive jumps fr
one of the attractors to the other is presented for the same pa
eters’ values.
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PHASE SWITCHING IN A SYSTEM OF TWO NOISY . . . PHYSICAL REVIEW E68, 061917 ~2003!
the external forcing signal and each one of them is separ
from those in its immediate neigborhood by time interv
where very few phase jumps are allowed. Similar resu
have been obtained for a smaller forcing amplitudeA
50.75mA/cm2). However, the use of a greater signal a
plitude (A52.0 mA/cm2) still locks the cyclic relative phase
F to the external forcing, but usually the relative phasec
grows without limit as time increases. It is worth to noti
that this is not the case when smaller amplitudes are u
~for example,A51.5 mA/cm2, corresponding to Fig. 11, o
A50.75mA/cm2). For these amplitude values, besides
fact thatF is statistically locked to the phase of the extern
forcing, the relative phasec always switches between tw
attractors that remain fixed in time. In summary, it could
said that the pattern of phase switchings transduces the
ternal signal, the quality of this transduction being measu
by the width of each peak of the histogram.

FIG. 11. The timing of phase switchings under external forci
In the upper panel one stochastic trajectory is depicted to show
behavior of the cyclic relative phaseF under the action of an ex
ternal forcing of amplitudeA51.5 mA/cm2 and periodTs55 s. A
graph of a sinusoidal function with the same period and ini
phase as the forcing signal is shown by using a dashed line. A
can observe, the successive switching processes occur m
around a given phase of the external forcing. In the lower pane
~unnormalized! histogram showing the statistics of the switchin
times is shown. To construct it, we have used 50 stochastic tra
tories, each one lasting 50 s. The model parameters weree50.07
andD5231025.
-
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V. CONCLUSIONS

By using a realistic neuron model we have shown t
both coupling and internal conductance noise could p
complementary roles in the emergence of synchronous n
ral activity. We have studied a system of two diffusive
coupled Hodgkin-Huxley neurons in a regime where the
terministic dynamics leads to a nonoscillatory state and
have investigated the role of coupling once the existence
internal noise guarantees the production of spikes by e
neuron. For neurons in the strong coupling region a state
statistical out-of-phase synchronization is reached if
noise level is small enough. In this state, the distribution
the cyclic relative phase between neurons peaks aroundp.
As the noise level is increased and the coupling strengt
not too strong, this phase-locked evolution is lost and
relative phase can perform a rather complex dynamics c
acterized by the existence of several attractors. For so
combination of coupling and noise the two-state dynamics
the relative phase gives rise to the switching of this quan
between two symmetrical and equiprobable attractors. In
regime, the coupling is strong enough to lock the relat
phase near a given value but the noise is able to exchang
role of both neurons from time to time.

In this bistable regime, the simultaneous forcing of bo
neurons by the same sinusoidal signal can induce the loc
of the switching times of the relative phase to the period
the forcing. Thus, the cooperative action of coupling a
noise allows the transduction of the external signal by
pattern of phase switchings. In this context, the role of c
ductance fluctuations is twofold because, on the one ha
for subthreshold signals it is just the noise that allows e
neuron to fire so that the transduction process would not t
place in its absence. On the other hand, it is clear that int
sic noise is the origin of the lack of precision in the tran
duction process. A detailed analysis of this phenomenon
be published elsewhere.
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