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Phase switching in a system of two noisy Hodgkin-Huxley neurons coupled
by a diffusive interaction
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The focus of this paper is on the synchronous activity of a system of two intrinsically noisy Hodgkin-Huxley
neurons coupled by a diffusive interaction. It is shown that conductance noise allows the relative phase of the
neurons to display several different dynamical regimes ranging from phase and antiphase locking to random
switching between two or more states. A synchronization diagram displaying the structure of the distribution
function of the cyclic relative phase of the two neurons is presented. The addition of sinusoidal forcing terms
to the equations governing the membrane voltage of both neurons gives rise to the statistical locking of those
random switchings to the phase of the external signal.
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[. INTRODUCTION Vreeswijk et al. [10]. On the other hand, Hansel and co-
workers[11] investigated the phase dynamics of two weakly
Experimental evidence suggests that the synchronous aceupled Hodgkin-HuxleyHH) neurons and showed the ex-

tivity of large assemblies of neurons provides the basis of théstence of out-of-phase locking between them. Later on, Han
remarkable computational performance of the bfai]. In ~ and co-worker$12] explained these results by investigating
an attempt to understand the origin and role of synchronoufe dynamics of the relative phase of an ensemble of coupled
neuronal activity, a number of modeling approaches hav/orris-Lecar neurons. The Morris-Lecar systddB] is a
been based on the description of each single neuron as S§mplified version of the original Hodgkin-Huxley model of

multidimensional oscillatof3]. Thus, the study of synchro- neuronal dyrr:amic§14], in(;/vhicg the f?ur varigt;]les ofﬁthis_
nization processes in ensembles of interacting nonlinear o;@St system have been reduced to only two without aftecting

cillators is basic for the understanding of some key issues i a drastic manner the qualitatively features of the original

neuroscience. Most former theoretical investigations into themOdeI' By restricting to the weak coupling I|m!t, as the|r'
approach is valid as long as the shape of the limit cycle is

self-synchronization of ensembles of nonlinear oscnlatorsofIy weakly altered by the interaction, Han and co-workers

have focgse(_j on the question to what extent the degree 2] showed that it is not immediately obvious whether the
synchronization can be controlled through the strength of th et result of diffusive coupling will lead to synchronization

interoscillator coupling4—7]. This formulation assumes that o qesynchronization of two coupled oscillators. However,
the synchropoys activity of I_arge neurgl systems is ac.h|eveﬂ)r many cycle limit systems, weak diffusive coupling will
through variation of synaptic interactions. However, it hasiock the neurons in a stable out-of-phase oscillation with a
been argued that transitions from desynchronized to synchrgshase difference of-. If the coupling is not weak enough, a
nized states and vice versa could also be mediated byomplex evolution of the phases with alternating periods of
changes in the susceptibility of the neurons to external excisynchronous and asynchronous activity would appear.
tations[8]. From a theoretical point of view this idea implies  Synchronization phenomena have been also investigated
that the interesting regime to model is the border betweein nonlinear stochastic systems. There, the phase description
excitable and self-oscillatory behaviors of the neuron, a rehas been found to be useful for the analysis of synchroniza-
gion where the internal noise of the cell could play a signifi-tion in many systems of biological relevance. A great deal of
cant role as a promoter of neuronal synchronization. these investigations have been based on the classical ap-
The synchronization of two deterministic relaxation oscil- proach to synchronization in the presence of additive noise
lators coupled by a diffusive interaction is a well known carried out some years ago by Stratonoyith]. Usually, the
phenomenon. Some years ago, Sherman and Rj8zelb-  noise acting on the elements of an ensemble of neurons has
served dephasing and antiphase locking in simulations dfeen introduced by means of a fluctuating current that is
two diffusively coupled neurons, while the effects of synap-delivered to the neuron either by the rest of the elements of
tic coupling, both of excitatory and inhibitory character, onthe ensembldthus resembling a fluctuating synaptic input
the synchronization of neural firing were tackled by or directly from the external worldthus simulating the ac-
tion of an experimentgf3]. The analysis of the phenomeno-
logical stochastic bifurcations taking place in noisy Van der
*Electronic address: casado@us.es Pol-Bonhoeffef16] and FitzHugh-Nagum@17] oscillators
"Electronic address: baltanas@escet.urjc.es driven by weak additive noise has shown that external and/or
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synaptic noises induce these systems to move atoghas- oped in the classic paper of Hodgkin and Huxléy]. There,

tic limit cyclesin a range of parameters where the determinthe temporal evolution of the voltage across the neuron’s
istic equations do not show limit cycle behavior at all. Thus,membraneV/(t) is governed by a differential equation of the
additive noise decreases the effective threshold for firing an¢brm

allows a weak interneuronal coupling to drive the neurons to

synchrony[18]. av. . -
In this paper, the effects of a different kind of noise will Cgr =~ InaMN(V—=Vya) —gin*(V— Vi)
be investigated. Basic to our present understanding of the
nervous system is the fact that the dynamics of ion channels —gu(V=V)+I, (1)

underlies all the electrochemical phenomena taking place in ) ) ,

nerve cells. Thus, central to the study of neuronal excitabilityVhereC=1 '“F/‘imz is the capacitance per unit area of the

is the connection between the microscopic properties of jofembrane, angy,=120 mS/cm and g =36 mS/ci are

channels and the macroscopic behavior of nerve membrand§€ maximal conductances per unit area associated with so-

Following the development of patch-clamp techniquesdium and potassium channels. The constangs

which allowed to measure ion currents through individual=0-3 mS/cm and V, =—54.4 mV are, respectively, the

ion channels for the first timgl9], a number of numerical constant cqnductance per unit area and reversal potential as-

studies have been devoted to relate the stochastic behavior g9ciated with the leakage of ions through the membrane.

individual ion channels to macroscopic currents that chang&loreover,Vy,=50 mV andVy=—77 mV are the reversal

in a h|gh|y deterministic manndﬂo]_ More recently, some pOtentials associated with the equilibrium distribution of

work has been carried out aiming to incorporate the stochada”™ and K™ ions across the axonal membrafit]. The

tic description of ion channels into the framework of the constantl represents a stimulus or constdtunic) current

Hodgkin-Huxley model of spiking dynamics. Chow and that is delivered externally to the neuron. The adimensional

White, for exampleg21], have derived an analytical expres- gate variablesn(t),h(t), andn(t) that govern the activation

sion for the probab|||ty of Spontaneous f|r|ng in ana|ogy with and inactivation of sodium channels and the activation of

a classical barrier-crossing problem and, under the assumpotassium channels, respectively, obey the following set of

tion that sodium inactivation takes place at a much fasteflifferential equations:

time scale than changes in the other variables appearing in dm

thfa HH model, they ha_tve been gble to incorporate a fluctu- —— =, (V)(1=m)— B (V)m,

ating term to the equation governing the sodium conductance dt

in this model. On the other hand, Fox and [22] have

approached the problem starting from a master equation gov- dh

erning the stochastic dynamics of a large population of ion a=ah(V)(1—h)—,8h(V)h,

channels. This formulation allows these authors to contract

the description of the dynamics to yield Langevin equations n

describing voltage-dependent fluctuations in the gate vari- gr = V(L= = B,y(V)n, 2

ables that account for the activation and inactivation of so-

dium channels and the activation of potassium channels. where the experimentally determined voltage transition rates
In what follows, we will use the stochastic HH neuron are given explicitly by the expressiofi&4]

model of Fox and Lu to investigate the synchronizing behav-

ior of a pair of noisy neurons when the coupling as well as 0.4V+40)

the noise intensity are varied. In particular, we are interested am(V)= 1—exd —(V+40)/10]’
in the phase locking of these neurons when conductance
noise is allowed to excite them from the resting state to a Bm(V)=4 exg — (V+65)/18],
regime of random spiking. Regimes of phase and antiphase
synchronization, as well as multistate phase dynamics have an(V)=0.07exp— (V+65)/20],
been found.

The forcing of the system by an external sinusoidal signal Bn(V)={1+exd —(V+35)/10]} 1,
added to the equations for the membrane voltages allows us
to lock this switching to the period of the forcing. This seems : 0.04V+55)
to be an interesting feature of the system’s dynamics because, an (V)= )
unlike what occurs in the usual stochastic resonaigR® 1=exd = (V+55)/10]
phenomenology, the variable that performs the well-to-well B.(V)=0.125exp— (V+ 65)/80] 3)

hoping motion does not appear explicitly in the Langevin

description of the fluctuating dynamics. It can be showi23] that, with this parametrization, the birth

of limit cycles occurs at=1,,~6 uA/cm? due to a saddle-
node bifurcation of periodic orbits. On the other hand, the
unstable branch of the periodic solutions dieslatl,,
Let us consider briefly the description of the space-~9.8 uA/cm? through an inverse Hopf bifurcation. Thus, in
clamped dynamics of a patch of neuronal membrane devethe parameter regionl<l,;, the resting stateV,qq

Il. THE HODGKIN-HUXLEY MODEL
WITH CONDUCTANCE NOISE
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~—65 mV is a globally stable solution whereas gy <I

<l the system has two stable attractors, a fixed pointand ¢ 20

limit cycle. The focus of this work is on the parameter region

near the onset of the saddle-node bifurcation of periodic or- 0

bits. In thisexcitable regionneurons are unable to fire spon-

taneously in the absence of noise. S
A great deal of work has been devoted to study the effect<E

of forcing on the HH mode]23,24]. This has been done so >

far by allowingl to become a function of time of the general 40
form
-60
|:|0+|ext(t)+|syn(t)y (4)
L 1 L 1 s 1 L 1 L 1 L
wherel, is a constantl ., (t) is an external signal of deter-  ©°0  0.0005 0.001 0.0015 0.002 0.0025 0.003
ministic or stochastic nature, arngl,(t) is a stochastic pro- D

cess _that .s!mulates the synaptic noise. In t_he case of a sto- FIG. 1. Stochastic bifurcation diagram for the HH model with
chastic dr|V|r_lg(andI9<Ib1) the HH system elther fluctuates conductance noise wher=0. Notice thatD is an adimensional
"’,lro,und the fixed point or makes large .e.xcurspns.around thEarameter. Thick lines correspond to the top and bottom boundaries
!|m|t cycle [24]. Thus_, a source of additive noise n HA) _ of the stationary distribution function of the membrane potential,
induces voltage oscillations that appear as a train of spikeg (v). The dashed line stands for the mean value of the membrane
occurring at random times. _ N potential computed over this distribution

In this paper we are interested in describing the effects of
conductance noise on the dynamics of the HH model. Byeduce the number of parameters, and taking into account the
conductance noise it is meant that we explicitly take intonumber of sodium and potassium channels in a patch of
account the spontaneous fluctuations of the membrane cofmembrand60 potassium and 18 sodium channels per square
ductance due to the intrinsically stochastic dynamics of thenjcrometer[25]), we have takerDy,=D andD¢=D/0.33

individual channels. As a consequence, and unlike the flucsg that the correct proportion between sodium and potassium
tuating terms appearing in E¢4), the conductance noise is channel densities is preserved.

an intrinsic property of each neuron. To model this kind of  As is well known, qualitative changes in the behavior of
noise, we recall the stochastic HH model of Fox and22],  stochastic systems due to the modification of a parameter are
where the voltage variable still obeys Ed) but the gate  termed phenomenological stochastic bifurcations. These bi-
variables are random quantities obeying the set of stochastigrcations refer to qualitative changes in the stationary dis-

differential equations tribution of the variables. A typical feature that has been used
dm to mark the occurrence of such a bifurcation is the number of
5= am(V)(1—m) = Br(V)M+ E(1), modes of the stationary distribution function. The analysis of

the stochastic bifurcation leading to spiking in the HH model
subjected to a subthreshold tonic current plus additive syn-
aptic noise has been carried out by Tanabe and co-workers
[24]. Here, we show that a similar behavior takes place when
the HH model is subjected to conductance noise.

dh
T ap(V)(1=h) = B(V)h+ &x(1),

dn The stationary distribution of the voltage is defined as the
gr =~ an(V)(X=n)=Ba(V)n+ &,(1), () marginal probability distribution of the proce¥4t),
where the noise term§m(_t), &n(1), ar]d &.(1) are indgpen— (V)= Jldmfldhjldn p(V,m,h,n), @
dent, zero-mean, Gaussian stochastic processes with autocor- 0 0 0

relation functions given by22]
wherepg(V,m,h,n) is the time average of the joint probabil-

(En(DEn(S))= DNaam:me,(t_S) ity distribution p(V,m,h,n;t) of the random processes
mrsm "~ (amt Bm) ' V(t),m(t),h(t), and n(t) that define the stochastic HH
model
DnaanB
(&)=, 7 oS, 1T
apt B p<(V,m,h,n)= lim Tf dt p(V,m,h,n;t). 8
T—o 0
Dy anBn
(€n()&n(s)) = (an+Bp) o(t=s). ©) Histograms representing the marginal stationary distribution

for the membrane voltagey(V) have been determined from
The adimensional parameteBs, and Dy are associated the numerical simulation of the stochastic system by using
with the inverse of the total number of sodium and potassiunthe algorithm put forward in Ref28]. In Fig. 1, we present
channels present in a given patch of membrane. In order tthe bifurcation diagram obtained from these histograms. The
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thick lines appearing in this diagram are the top and bottonallowed values ranging from zero @* we have imple-
boundaries of the stationary distribution function of themented numerically the procedure to makét),h(t), and
membrane potentigd (V) as functions of the noise intensity n(t) always located between zero and d@&]. Next, two
D. These boundary lines have been drawn so that 1fg &f  point processes of the form
beyond the top line and another 1% is below the bottom one.

At low noise (D<0.0005), the voltage/(t) performs N
small random oscillations around the resting state of the sys- 2(t)= 2, S(t—t,) (10
tem. In this regime, the stochastic bifurcation diagram re- n=t

minds one of the “canard” zone that appears close to th% b tracted f th . f the stochastic si

Hopf bifurcation threshold in the FitzHugh—Nagumo model a;/ev een eg\r/ac N hromh N crodssmg 0 der? ochalsalcUSIg-

[26]. This small-amplitude oscillatory behavior correspondsnaS 1(t) andV(1) t rough a predetermined threshold. Up
trokes of the voltage variables are counted as spikes when

to the silent regime of the neuron because no spikes at h - litude of 10 mV havi .

produced, and is characterized by a nearly Gaugsiav). e3|’ reac ad r?r:nlmumt amlpl ugoo Vf m b allvmgT}:r)]r_ew—

As the noise is increased, the system is driven to fire ran2US!y Crossed the reset value 6isu mv:from below. 1his
spike detection scheme discards any very rapid recrossing of

domly, and a second mode p§(V) appears at high values of . . -~
V that is associated with the performing of large excursion§he threshold. at 10.m\./, an effect that increases in probability
gthe noise intensity is increased. Each one of the aforemen-

of the system variables through the phase space. This chan ) ) ;

in the structure opg(V) asD changes can be associated with oned point processes gives the temporal sequence of spike
the occurrence of a phenomenological stochastic bifurcatior?ciurtrenceéft”} fgcri a pet:;/tmullzr nf-urlon. ith

As we can notice in Fig. 1, and in contrast with what occur at -€' US consider 'two identical - neurons - withy )

_ 2 : : ;
a deterministic bifurcation, the transition from one stationary~ & #A/CM". For this value of the tonic current the neuron is

distribution to another qualitatively different one proceedsIn the sp-cgllecbxcnable re%lmrf]angre the dgtermlr]lsgcbat- h
progressively when the bifurcation parameter is varied. tractor Is the rest state and the firing can be excited by the
On the other hand, as suggested by the results shown innpise. In what follows, we will consider the strength of noise

previous study[27], the mean firing rate of an isolated acting ondbothhneurons t?] be.ide_nticBIﬁI?]z:D. iated
Hodgkin-Huxley neuron with fluctuating conductances in- 10 Study phase synchronization, we have associated a

creases with increasing noise level for every value of thé)hhase to the spike sequeritg} of each neuron by means of
currentl <I,;. Thus, conductance noise shifts the onset of"e Prescriptiori1]
oscillatory behavior to lower values of thus cooperating

Wlth_ the coupllr_\g to synchronize the neurons. This is the ¢(t):277—_” +2mn, t st<t, ;. 11
basis of the noise-induced frequency locking between neu- tha1— 1ty
rons.

The phase synchronization of two neurons can be studied
I1l. NOISE-INDUCED PHASE SWITCHING with reference to the instantaneous phase difference between
) _ them, (1) = ¢1(t) — ¢(t). In stochastic systems this quan-
Let us consider a system composed by two Hodgkintity is generally not constant even when the oscillators are
Huxley neurons coupled to each other by a diffusive interacfrequency locked. For small coupling and/or strong noise

tion. The equations of this system explicitly read intensity (t) will grow unbounded. However, if the cou-
qv pling is increased and the noise level is not too high the
c—t— —g%.meh; (V1= Vya) —g5nd(Vi— Vi) — g (Vy relative phase will fluctuate around some constant level. At
dt times, these stationary fluctuations will lead to a phase slip

where the relative phase changes abruptlyd®r. Thus, it

=V +e(Vi—Vo)+1q, . . ) A v

U eVaimVo) is useful to define the phase locking condition in a statistical
dv, sense by using the cyclic relative phase

gt =~ IRamiha(Vo— Viva) — Gin3(Vo— Vi) —gu(Vz
d=4¢ (mod2m). (12
V) +e(V—Vy)+1y, 9 , o ) ) )

A dominant peak of the distribution of this cyclic relative
whereV,(t) andV,(t) are the instantaneous voltages acrosphaseP(®) will announce the existence of a preferred rela-
the respective membranes of the two neuronslarnahdl,  tive phase associated with the dynamical evolution of both
are two constants. The parameteris the strength of the neurons. When this preferred phase is zero we speak of
“diffusive” [12] or “electrical” [3] coupling between the phase synchronization in a statistical sense. Analogously, we
neurons and can be interpreted as the conductance of tlean speak of out-of-phase synchronization when the distribu-
(symmetrig synaptic connections between them. Again, thetion P(®) peaks around a nonzero valuedf
gate variables of the two subsystems obey KEBs. For the system at hand, a synchronization diagram in

The numerical integration of the resulting set of eight sto-terms of the parameters and D has been obtained. This
chastic differential equations has been carried out by using diagram, which is depicted in Fig. 2, presents several re-
stochastic integration scheme with a step $ize0.01[28]. gions, each one characterized by a different form of the prob-
In order to confine the conductances within the physicallyability distribution P(®). The characteristic features of
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FIG. 2. Synchronization diagram for the relative phase of two

noisy Hodgkin-Huxley neurons. Region 1 corresponds to states of
statistical antiphase synchronization. In region 2 there is no noise-

induced firing. TheM —B line corresponds to a functiog,(D)
giving the minimum value of the coupling strengghfor which a
statistical phase locking is stablb.is the noise strength as it ap-
pears in Eq(6) and the subsequent paragraph. Drifting behavior of
the relative phase corresponds to the lower right corner of the dia-
gram.

some distributions corresponding to the several regions ap-
pearing in the synchronization diagram are plotted in Figs. 3 0 4

and 6.
In region 1 of Fig. 2, the distributio?(®) shows a o (rad)

monoqual character and its peak is genteredlﬁeﬁw. FIG. 3. Probability distribution of the cyclic relative phase for
Thus, this region corres.pon_ds to the.an'uphase locking stat§)me characteristic values of coupling and nosee=0.16: B, e
that appears at strong diffusive coupling. In our system there.g 12: ¢, ¢=0.11: andD, €=0.07. In all caseD=10"5. The
appears a minimum value of the coupling parametefor  panels have different vertical scales.

which the antiphase locking becomes stable in a statistical

sense. Furthermore, as we can observe in the synchronizatigie distribution function®(®) corresponding to values ef
diagram, this minimum coupling Is quite independent of thejocated at both sides of the lid —B. The temporal evolu-
noise intensity, as least f@@<2x10"~. For large values of tjon of some realizations of the stochastic procggs cor-

€ with respect toe, the probability of the relative phase responding to those cases appears in Fig) 4nd 4c). In

becomes rather narrow, thus indicating that for strong courig. 3(d), on the other hand, the structure B{®) for a
pling the state of statistical antiphase synchronization is

(d)
6

close to the full antiphase synchronization appearing in de- ] @
terministic systems. An example of this kind of probability — _,
distribution is depicted in Fig. (@), whereas in Fig. @) a I N S

realization of the process(t) for the same values of and
D is depicted to show the fluctuating character of its tempo- 2 [ A A p ST

ral evolution. Indeed, the particular value of the base line 4 (b)

around which the fluctuations are performed couldrber E ©
—a depending of the realization. Whenis decreased and = ‘;
the lineM — B is approached the distribution functiét®{®) 3 W““MAW“»MWW

broadens. It also broadens if we move to higher noise inten-

sities by keeping> ¢, constant. 2 [
The crossing from above of the lidd — B corresponds to _g % @

the distributionP(d) becoming bimodal. Just under this line

the two peaks of the distribution are closely spaced but as

is further decreased, these two peaks shift away and narrow.

This focusing clearly reflects the two-state character of the FIG. 4. A single realization of the stochastic procggs) cor-

phase dynamics. In Figs(8 and 3c) we depict the form of  responding to the four representative cases depicted in Fig. 3.

0 2000 4000 6000 8000
t (ms)
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range of parameters well below the dividing line is shown. 4.5 . |
Its bimodal character neatly announces the main features @
the phase evolution shown in Figid}. As we can observe in
this last plot, the relative phase of both neurons fluctuates 4 .. :
successively around a pair of symmetric values and, from
time to time, jumps from one of them to the other take place.6
This two-state dynamics reflects a compromise between th¢g 3.5 - 1
effects of coupling and noise. Our findings thus imply that f
the relative phase of the system carries out a process o,e;a i
noise-induced phase switching between two symmetrical 3 1
states resulting from the combined action of noise and cou- .
pling.
As a consequence, the fluctuating dynamics of the relative 2.5 . 1
phaseys in the region close to the lin®l —B resembles the '
overdamped evolution of the coordinate of a particle in a
one-dimensional double-well potential. In other words, we
can characterize the temporal dependence of the relativi
phase by the stochastic differential equation

.07 0.09 0.11 0.13 0.15 017
& (mS/cm?)

FIG. 5. Bifurcation diagram showing the maxima B{®) as
i//z —Us(h) + E(1), (13 functions of the coupling strength for D=10"°. Points corre-
spond to the results of the simulation and the dotted line appears
whereé(t) is some stochastic process that plays the role of anly as a guide to the eye.
noise andJj is the first derivative of an effective potential
function U.(¢) that presents a single minimum é< ¢, the coupling parametet, we enter region 8 where the struc-
and two symmetric minima whee>¢,. Notice, however, ture of the distribution functiorP(®) is monomodal with
that in the present situation the potenﬁ_béff is not givena hlghly deve|0p6d WingS. The drlftlng behavior of the relative
priori, as is the case in the usual setting of the LangevirPhase corresponds to the lower right corner of the diagram.
description of fluctuations. In our case, the properties of thign this synchronization diagram no lines have been plotted
function depend on the dynamical behavior of a Comp|ete|3peparating the aforementioned regions because the structure
different system, namely, the system of differential equation®f P(®) changes in a continuous manner when we move
describing the two neurons. Thus, the description of the dyeithere or D and it will be rather arbitrary to draw separation
namics of the relative phase provided by Ef§3) can be lines among regions of closely related behavior. In Fig. 6 we
considered only as a useful way of thinking. have plotted some representative distribution functions cor-
In this context, we can say that a new phenomenologicalesponding to different combinations efand D. Isolated
stochastic bifurcation takes place for the relative phase as tHeoints marked in the synchronization diagram correspond to
coupling parameter crosses the lile-B in the synchroni-
zation diagram. As is customary in these cases, we plot ¢

bifurcation diagram depicting the maxinda, ¢, of P(®) as
the coupling parameter is varied. Such a diagram is pre-
sented in Fig. 5 foD=10"°.

Region 2 in Fig. 2 corresponds to the silent state of both'®

(d) (9

neurons. There, the combination of coupling and noise isS
unable to excite the firing and so, both neurons only performg

low amplitude fluctuations around its resting potentials. On &

corresponds to the bimodal structure Bf®) depicted in -

the other hand, the dynamics of the relative phase in region 3&
Figs. 3c) and 3d). As we approach region 2 from above, the

@

i

peaks of this distribution shift t# =0=24. In region 5, on ©
the other hand, the structure B{®) has a complex multi-
modal character with two symmetrical peaks arouhd
=1, two extra peaks ab~0 and®~2s, and a number of

2 4 6

smaller maxima. As we move towards smaller values of the
coupling parameter, these two central peaks decrease i 0
height and eventually disappear as we enter region 6. This
last region is thus characterized by a bimodal distribution g 6. The distributions of the cyclic relative phagéd) cor-
with peaks centered around and 0. In region 4, on the yesponding to some representative points of the synchronization

other hand, the peak arountdalso disappears. In region 7, diagram specified in Fig. 2. Typically, each one of these distribu-
the distributions are again of a bimodal character but theyions has been plotted by using36tochastic realizations ob,

have smaller wings than those of region 5. As we decreaseach one lasting 8 s.

o (rad)
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FIG. 7. The distribution of the cyclic relative phase correspond-  F|G. 8. Bursting behavior foe=0.03 andD =2x 10"5. In pan-
ing to the pointd in the synchronization diagrane£0.04, D=6  ¢|s(g) and(b) two single realizations of the membrane potentijs
X 107%) for an asymmetrical system in which the tonic signal act- gnq V, are depicted. In panelc) we can observe the temporal
ing on neuron 1 was;=6 pA/lcm? while that corresponding to  eyolution of the relative phasg(t) corresponding to these particu-
neuron 2 wad,=5 uAlcm?. lar realizations. The distribution of the cyclic relative ph&xgb)

. ) ) i corresponding to this case belongs to region 4 in Fig. 2.
the different distributions depicted in this last figure.

The structure of the distributioR(®) is dependenton the i |ong interburst periods, these extreme values of the cy-

neuro.ns.bei.ng equal or diffferent..ln Fig. 7 we have depicte lic relative phase can correspond to relative maxima of the
the distribution of the cyclic relative phase for two neuronsdistributionP(Cb) as is shown in panel®), (c), (d), (), and
which receive different tonic subthreshold currents. As We(f) of Fig. 6 ' A

can observe, in this case the distributiB(®) is asymmet-

ric. This distribution should be compared with that appearingSW
in Fig. 6(d), because they both correspond to the point la-
beled d in the synchronization diagram. This comparison
shows that depending on which neuron has its phase delayed M

with respect to the other the distribution fis rather simi- W(t):kzl o(t—ty), (14)
lar or very different to that of the symmetrical system.

Starting from the dynamical evolution @f in the phase-
itching regime, we have obtained a new point process

IV. TEMPORAL STRUCTURE OF THE PHASE where a given temporal sequerftg;k=1,2, ... M} corre-
SWITCHING sponds to the successive times at which a realization of the

cyclic relative phase crosses the valge=0 (switching

The behavior of the coupled HH neurons studied in thistimes. The introduction of this point process allows us to
paper can lead to spike trains with different temporal strucstudy the temporal structure corresponding to the bistable
tures. For values of the coupling parameter near theMne dynamics of the relative phase founded in the region close to
— B the firing is continuous. However, near the onset of spik-the lineM — B, which has been described above. This struc-
ing regime, the structure of the spike train fired for the neuture can be characterized at a first level by the distribution of
rons depends on the particular choice of the parameters. Aswitching times. There are only two possible consecutive
we can observe in Figs(& and 8b), both neurons can emit time-interval sequences available to a two-state system, as
bursts of spikes separated for long periods of small oscillashown in Fig. 9. The interval§, measure the escape times
tions around their resting potentials. During the time coursdrom the neighborhood of the upper value of the relative
of these bursts, the relative phase performs a number of sughase. On the other hand, the sequefgg corresponds to
den changes, thus giving rise to a rather complex temporahe intervals between successive jumps from states around
evolution of the function/(t). As we approach the region 2, one of the attractors to the other one.
both the frequency of bursting and the number of spikes per In Fig. 10 we present two histograms characterizing the
burst decrease, thus announcing the proximity of the silentandom behavior of these two different time intervals for the
region. During the intervals between two successive burststochastic two-state dynamics of the relative phaséoth
the phase of each neuron remains almost constant due to thistograms show a rapid increase in the number of events as
large value ot ;—t, in Eq.(11). As a consequence, during the sizes of the intervals increase, followed by a maximum
these interburst periods the relative phase takes vajues and a slow decaying tail extending to very long intervals. In
~2n7 with n=0,1,..., and so,only contributions to a number of cases no phase jumps were detected in the
P(®~0) andP(d~27) are made. In dynamical regimes course of stochastic realizations lasting 50 s. The mean in-
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FIG. 9. An example showing the two possible sequences of ‘g
consecutive time intervals available from the two-state evolution of N
the relative phase. 8
g 10 - 7
J
tervals obtained wer¢T)=726.1 ms and 7)=1417.8 ms, pd
suggesting that both quantities are connected by
= 0 iy
{ry=2(T). (19 0 1000 2000 3000 4000 5000
This relationship in turn suggests that the switching probabil- time (ms)

ity is symmetrical. In fact, the structure of these histograms ] ) ] ]
agrees with our previous characterization of the two-state F!G: 10. In panela), the histogram of residence th;es fin
dynamics of the relative phase close to Me- B line as the one of its attractors is depicted fer0.07 and3=2><_10 : T_hese
randomly forced evolution ofy in an symmetrical bistable values C(_mesmnd o a.ran.dom two-state dynamics .S'm"ar o the
potentiaiU y(5). one leading tq the dlstrlbgtlon depicted in pasal of.Flg.. 6. In
Given the structure of the above mentioned histograms iganel(b), the histogram of mtervals_ between successive jumps from
. . . . ne of the attractors to the other is presented for the same param-
is tempting to explore the behavior of the relative phase Unga o' yarues.
der the action of a forcing term in order to ascertain the
possibility of controlling the switching times by applying ) ] ] ]
external sinusoidal currents to both neurons. Some years agéhtial equations for a value of the amplitude of the forcing
Longtin and co-workers characterized SR in bistable system&=1.5 uA/cm?. This signal is subthreshold so that in the
by means of the mu'ti-moda' Character Of the ﬁrst passagé.bsence of noise it is Unable to excite the fll’ll’lg of the neu-
time distribution function of a particle moving in a double fons. Also, we have chosen a frequeney=1.25 Hz which
well potential[29] and a huge amount of work has been is smaller than the inverse of the mean switching interval in
devoted since then to explore further this id&@,31. No-  absence of forcing. In the upper panel, a single trajectory for
tice, however that, unlike what happens in the usual settinghe cyclic relative phas@ is depicted jointly with a sinu-
of SR, in the present case the variable that performs thgoidal function of periodTs=2m/ws (dashed ling This
well-to-well Switchings does not appear exp”ciﬂy in the function provides a useful background to analyze the timing
Langevin equations of the system. It is ropriori obvious  Of the phase switching processes. As we can observe, in spite
that an additive signal acting on the voltage variables coul®f the very complex behavior ¢p, the sudden jumps from
induce such phase switchings. one attractor to the other seem to occur with greater prob-
Let us consider the simultaneous and symmetric forcingibility at a given phase of the external signal. This statistical
of both neurons by an external sinusoidal signal of amplituddocking to the phase of the external signal is demonstrated
A and frequencyws acting on the respective voltage equa- clearly in the lower panel of Fig. 11, where thennormal-

tions. In this case, the termg;,) appearing in Eq(9) will be  ized histogram of switching times is depicted. Note the pe-
written as riodic character of this histogram with rather broad maxima

separated by time intervals that are equal to the period of the
l1(2)=loTAcoswdt, (16)  forcing signalT=5% 10> ms. Notice also that, in spite of
the rather high variability of the time intervals that elapse
wherel,=6.0 uA/cm?. In Fig. 11 we present some results between successive switchings, these maxima are clearly de-
obtained by integrating the resulting set of stochastic differfined. In fact, they are located at the successive minima of

061917-8



PHASE SWITCHING IN A SYSTEM OF TWO NOISY ... PHYSICAL REVIEW E8, 061917 (2003

3F T T T —_ V. CONCLUSIONS
621; ] By using a realistic neuron model we have shown that
8ok ‘ ] both coupling and internal conductance noise could play
e 1k | . complementary roles in the emergence of synchronous neu-

-2k | ral activity. We have studied a system of two diffusively
m -3 coupled Hodgkin-Huxley neurons in a regime where the de-
= : : : terministic dynamics leads to a nonoscillatory state and we
et have investigated the role of coupling once the existence of
215 7] internal noise guarantees the production of spikes by each
gm_ - neuron. For neurons in the strong coupling region a state of
o I 1 statistical out-of-phase synchronization is reached if the
% 5_ noise level is small enough. In this state, the distribution of
< the cyclic relative phase between neurons peaks areund

28000 30000 40000 50000

time (ms) As the noise level is increased and the coupling strength is

not too strong, this phase-locked evolution is lost and the
FIG. 11. The timing of phase switchings under external forcing.relative phase can perform a rather complex dynamics char-
In the upper panel one stochastic trajectory is depicted to show thacterized by the existence of several attractors. For some
behavior of the cyclic relative phase under the action of an ex- combination of coupling and noise the two-state dynamics of
ternal forcing of amplitudeA=1.5 uA/cm? and periodT,=5 s. A the relative phase gives rise to the switching of this quantity
graph of a sinusoidal function with the same period and initialpetween two symmetrical and equiprobable attractors. In this
phase as the forcing signal is shown by using a dashed line. As Weegime, the coupling is strong enough to lock the relative
can observe, the successive switching processes occur mainbhase near a given value but the noise is able to exchange the
around a given phase of the external forcing. In the lower panel, 3gle of both neurons from time to time.
(unnormalized histogram showing the statistics of the switching In this bistable regime, the simultaneous forcing of both
times is shown. To cpnstruct it, we have used 50 stochastic trajeG;q rons by the same sinusoidal signal can induce the locking
tories, each one lasting 50 s. The model parameters wel@07 ot he switching times of the relative phase to the period of
andbD=2x10"". the forcing. Thus, the cooperative action of coupling and
. . . npise allows the transduction of the external signal by the
the external forcing signal and each one of them is separat ttern of phase switchings. In this context, the role of con-
from those in its immed?ate neigborhood by ti_mg interV"’Ilsductance fluctuations is twofold because, é)n the one hand,
where very few phase jumps are allowed. Similar resultg, o pihreshold signals it is just the noise that allows each
have been ozbtamed for a smaller forcing amplitud® (oo to fire so that the transduction process would not take
=0.75 uAlenr’). Howgver,_ the use of a greater signal am-p|5ce in jts absence. On the other hand, it is clear that intrin-
plitude (A=2.0 uA/cm’) still locks the cyclic relative phase  gjc noise is the origin of the lack of precision in the trans-

@ to the external forcing, but usually the relative phase g ction process. A detailed analysis of this phenomenon will
grows without limit as time increases. It is worth to notice po published elsewhere.

that this is not the case when smaller amplitudes are used

(for example, A=1.5 uA/cm?, corresponding to Fig. 11, or

A=0.75 ,u,A/cmZ)_. For these amplitude values, besides the ACKNOWLEDGMENTS
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